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Fully developed turbulent channel flow has been simulated numerically a t  Reynolds 
number 13 800, based on centre-line velocity and channel half-width. The large-scale 
flow field has been obtained by directly integrating the filtered, three-dimensional, 
time-dependent Navier-Stokes equations. The small-scale field motions were simulated 
through an eddy-viscosity model. The calculations were carried out on the ILLIAC I V  
computer with up to 516096 grid points. 

The computed flow field was used to study the statistical properties of the flow as well 
as its time-dependent features. The agreement of the computed mean-velocity profile, 
turbulence statistics, and detailed flow structures with experimental data is good. The 
resolvable portion of the statistical correlations appearing in the Reynolds-stress 
equations are calculated. Particular attention is given to the examination of the flow 
structure in the vicinity of the wall. 

1. Introduction 
Large-eddy simulation (LES) is a relatively new approach to the calculation of 

turbulent flows. The basic idea stems from two experimental observations. First, the 
large-scale structure of turbulent flows varies greatly from flow to flow (e.g. jets us. 
boundary layers) and is consequently difficult, if not impossible, to model in a general 
way. Secondly, the small-scale turbulence structures are nearly isotropic, very uni- 
versal in character (Chapman 1979), and hence much more amenable to general model- 
ling. I n  LES, one actually calculates the large-scale motions in a time-dependent, 
three-dimensional computation, using for the large-scale field dynamical equations 
that incorporate simple models for small-scale turbulence. Only the part of the 
turbulence field with scales that are small relative to overall dimensions of the flow 
field is modelled. This is in contrast to phenomenological turbulence modelling, in 
which all the deviations from the mean velocity profile are modelled. 

A typical LES calculation for wall-bounded turbulent flows imposes a great demand 
on computer speed and memory. At present, therefore, the use of LES for practical 
engineering applications is admittedly uneconomical. However, for simple flows, such 
calculations are just within reach of the largest present computers. The information 
generated by these computations can in turn be used as a powerful research tool in 
studies of the structure and dynamics of turbulence. In  addition, the various correla- 
tions that can be obtained from the computed large-scale field may be used in develop- 
ing phenomenological turbulence models for complex flows. These are the considera- 
tions that motivate the present development of the LES method. 

The first application of LES was made by Deardorff (1970), who simulated a turbu- 
lent channel flow at an indefinitely large Reynolds number. In  this pioneering work he 
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showed that three-dimensional computation of turbulence (at least for simple flows) is 
feasible. Using only 6720grid points, he was able to predict several features of turbulent 
channel flow with a fair amount of success. Of particular significance was the 
demonstration of the potential of LES for use in basic studies of turbulence. 

Following Deardorff’s work, Schumann (1973, 1975) also calculated turbulent 
channel flow and extended the method to cylindrical geometries (annuli). He used up to 
ten times more grid points (65 536) than Deardorff, and an improved subgrid scale 
(SGS) model. In  addition to dividing SGS stresses into a locally isotropic part and an 
inhomogeneous part, he employed a separate partial differential equation for SGS 
turbulent kinetic energy. However, the added differential equation did not improve 
the results over the calculations in which only an eddy viscosity model was used 
(Schumann 1975). 

Grotzbach & Schumann (1979) extended their channel-flow calculations to account 
for temperature fluctuations and heat transfer. Later extensions by Grotzbach include 
calculations of secondary flows in partly roughened channels, inclusion of buoyancy 
effects, and liquid metal flows in plane channels and annuli. A recent review of this 
group’s work in LES was given by Schumann, Grotzbach & Kleiser (1980). 

I n  all of the above computations, the dynamics of the inner region of the boundary 
layer (viscous sublayer and buffer layer) was essentially ignored. It is in this region 
that virtually all of the production of turbulence kinetic energy takes place (Townsend 
1956; Kim, Kline & Reynolds 1971). Artificial boundary conditions in the logarithmic 
region were used to simulate the inner layers. Aside from the fact that these boundary 
conditions are designed to be consistent in the mean with the law of the wall, there is 
little justification or experimental evidence to warrant their use for the detailed flow 
field. However, the computations of Deardorff (1970) and especially those of the Karls- 
ruhe group have produced successful comparisons with experimental data in the 
regions away from the walls. With a relatively modest number of grid points, they have 
been able to extract considerable information of practical interest from their computa- 
tions. 

The first numerical simulation of turbulent channel flow that computed rather than 
modelled the flow in the immediate neighbourhood of the wall was that of Moin, 
Reynolds & Ferziger (1978). In  this calculation only 16 uniformly spaced grid points 
were used in each of the streamwise (x) and spanwise ( x )  directions, and 65 non- 
uniformly spaced grid points in the direction normal to the walls. The computational 
grid resolution in the lateral directions was inadequate for resolving the experimentally 
observed coherent structures in the viscous sublayer. Nevertheless, the computations 
did display some of the well-established features of the flow in the wall region. The 
results of this computation were encouraging enough to justify the undertaking of the 
present calculations. 

In  this paper, we describe our numerical studies of incompressible turbulent channel 
flow with up to 516 096 grid points. Particular attention is given to the investigation of 
the detailed flow structures. The Reynolds number Re, based on shear velocity u, and 
channel half-width was set a t  640. The corresponding Reynolds number based on 
centre-line velocity and channel half-width is about 13 800 (Hussain & Reynolds 1975). 
The results of this work can be summarized briefly by stating that, in the present 
computations, the calculated mean-velocity profile and turbulence statistics are in 
good agreement with the experimental data. The detailed time-dependent flow 
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structures are strikingly similar to those observed experimentally. I n  addition, the 
resolvable portion of several statistical correlations that play an important role in 
phenomenological turbulence modelling are computed. These results tend to indicate 
that the LES method can beusedvery effectively in supplementinglaboratorymeasure- 
ments of turbulent shear flows. 

2. Governing equations for the large-scale field 
In LES, each flow variable f is decomposed as follows: 

f =f+f‘, (2.1) 

where f is the large-scale component and f’ is the residual field. Following Leonard 
(1974), we define the large-scale field as 

where Gi is the filter function in the i-direction and the integral is extended over the 
whole flow field. In  planes parallel to the walls in which the flow is statistically homo- 
geneous, we use the Gaussian filter function 

G((x~ ,  x;) = (*~)~exp[-O(x,-x~)S/afl  - (i = 1,3).  (2.3) 

Here, Ai = 2hi (Kwak, Reynolds & Ferziger 1975), hi is the computational mesh size in 
the i-direction, and subscripts 1 and 3 refer respectively to the streamwise and span- 
wise directions. The corresponding integrals in (2.2) are extended over the entire 
(xl, %,)-plane. The width of the Gaussian function characterizes the size of the smallest 
eddies in the homogeneous directions that are retained in the filtered field (the largest 
eddies in the residual field). 

Owing to variation of turbulence length scale in the direction normal to the walls, 
x,, one should use a filter with a variable width, A,(x,). In  this direction a sectionally 
continuous ‘top-hat ’ filter function was used. Let x ~ , ~  be the location of thejth com- 
putational grid point in the vertical direction; we define the filter function G, for the 
control volume surrounding xg, as follows: 

(2-4) 

, + A-(x,))-l for x, - A-(x,) < x; < x, + A+(x2), 
for x; > x2 + A+(x,), 

) 

x6 < x2 - A-(x2), 
G2(xz,x~) = 

where 

The functions A+ and A- are sectionally constant functions of 2,; therefore, in the open 
neighbourhood surrounding each computational grid point, x ~ , ~  A- < x, < x , , ~  + A+, 
dA+ldx, = dA-/dx, = 0. An important consequence of this property of A+ and A- and 
the form of G, and G, (functions of xi -xi, i = 1 , 3 )  is the commutivity of the filtering 
operation and partial-differentiation operators in these neighbourhoods and in 
particular a t  the computational grid points (see Moin et al. 1978), i.e. 

af a? 
ax, ax; 
-- -- 
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Note that, with the application of G,, the filtered variable f will be sectionally con- 
tinuous, and the filtering in (2.3) is interpreted as an average over grid spacings in the 
x,direction. This is a step prior to complete discretization of flow variables for numeri- 
cal computation ( 9  3). 

Schumann (1975) and coworkers use a filtering function similar t o  (2.4) in all spatial 
directions. When applying this averaging process to the Navier-Stokes equations, 
they evaluate the integral in the direction of the derivatives analytically, and then 
have to deal with averages over the faces of the control volumes. This processintroduces 
three types of surface-averaged as well as volume-averaged variables. The extra vari- 
ables have to be related to each other in some way. 

Now, applying the filtering operation (2.2) to the incompressible Navier-Stokes and 
continuity equations, we obtain the dynamical equations of the large-scale flow field, 

where we have decomposed ui as in (2.1) and 

(2.8a) 

(2.8b) 

Here, the variables are non-dimensionalized using the channel half-width 6 and the 
wall shear velocity u,. The calculations were carried out for a fixed streamwise mean- 
pressure gradient which is accounted for by the Si, term in the momentum equation 
(2.6).  

There are two points associated with (2.6) that require further explanation. First, 
the convective term a(ui uj)/axj, is written in the equivalent but more cumbersome 
form 

This was done because i t  can be shown (Mansour et al. 1979) t'hat, in the absence of 
time-differencing errors, with this form conservation of energy, momentum, and 
circulation in inviscid flows will be obtained when virtually any difference scheme is 
applied to  (2.6). Secondly, it  should be noted that the so-called Leonard (1974) stress 
term - 

A . .  r3 = ui;iij-uiuj (2.9) 

is not equal to zero. One has the optionof calculating the termwithdouble barsexplicitly, 
or, as Deardorff (1970) has done, to incorporate Ai j  in whatever modelling assump- 
tion is used for rij (see 5 3). In  the present work, with respect to the Gaussian filter in 
the horizontal directions where the partial derivatives are calculated pseudospectrally 
( § 5 ) ,  we have chosen the former option. In $ 6  we shall show that A,, can be quite 
significant; hence including it with ri, is not recommended. With respect to the top- 
hat filter in the x2 direction where the derivatives are evaluated by second-order finite- 
difference schemes, the latter option was chosen. Here it can be shown that (Shaanan, 
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Perziger & Reynolds 1975) Aij is of the same form and order as the truncation error of 
the finite-difference scheme; hence its explicit calculation is not justified, However, 
when higher-order finite-difference schemes or spectral methods are used to  evaluate 
the derivatives in the x 2  direction, Ai j  should be calculated explicitly. It should be 
pointed out that, when higher-order finite-difference schemes are used in conjunction 
with staggered grids (Antonopoulos-Domis 1981), the required averaging of the vari- 
ables across the grid cells will account partially for A,. 

3. Residual-stress model 
The basic idea behind the large-eddy simulation is that the large-scale motions, 

which are calculated explicitly, provide most of the important turbulent transport, 
and hence the influence of the small eddies can be modelled relatively crudely. In  the 
present calculations, we have used an eddy viscosity model for rij similar to that used 
by Schumann (1975): 

7i.j = -2vT(Si j -  (&lij))-2V$(#gj), (3.1) 

where sij = -(-+Z), 1 aui 
2 axj 

and { ) denotes the average over a plane parallel to the walls. The small-scale eddy 
viscosities v, and v$ represent the action of the unresolved scales of motion on those 
that are resolved. Hence, as the resolution gets better, vT and v$ should get smaller. 
Since the filter widths represent the largest length scales that are not resolved, these 
widths are the characteristic size of the largest (and hence most important) residual 
motions. The first term in (3.1) with 

(3.2) 

is Smagorinsky's model, and can be derived from equating the subgrid scale (SGS) pro- 
duction and dissipation in homogeneous turbulence. This model was used successfully 
in the numerical simulation of the decay of isotropic turbulence by Mansour et al. 
(1979) and by Deardorff (1970) (with Sij - (Sij> replaced by Si j )  in the calculation of 
the core region of turbulent channel flow. I n  the expression (3.2) for vT, A is the 
characteristic length scale of the largest subgrid-scale eddies, here assumed to be 
(Deardorff 1970) 

VT = (C,A)2 [z(Xij- (Sij)) (&j-<#ij))I' 

A = (Al A2 A$. (3.3) 

C,is a dimensionless constant, and Ai is the filter width in the i-direction. In addition, 
in order to account for low-Reynolds-number SGX turbulence near the wall, the above 
expression for A was multiplied by the Van Driest (1956) exponential damping func- 
tion 1 - exp ( - y+/A+), with A+ = 25 and yf = ywu7/v, the distance to the nearest 
wall in the wall units. In  all the calculations reported here, which were performed with 
different grid sizes, the value of C, = 0.065 was used. Numerical experiments indicated 
that the use of a value much larger than this resulted in excessive damping of the 
resolvable turbulence. When lower values of C, were used, excess energy accumulated 
near the high-wavenumber end of one-dimensional energy spectra. In  general, how- 
ever, the computed turbulence intensities were rather insensitive to small perturba- 
tions ( N 20 yo) of C,. Note that the above value of C, corresponds to C, = 0.1, used by 
Deardorff (1970), if Ai in (3.3) is replaced by hi. 
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Near the wall the important large-scale structures are the 'streaks' (Kline et al. 
1967). These structures are relatively finely spaced in the spanwise direction. Their 
mean spacing characterizes the length scale of the eddies in the viscous sublayer (and 
hence the thickness of the viscous sublayer). Thus in a calculation with inadequate 
resolution in the spanwise direction, the thickness of the viscous sublayer will probably 
be larger than its physical counterpart. This in turn will lead to lower gradients of the 
computed mean velocity profile, and consequently insufficient production of the 
resolvable turbulent kinetic energy. Therefore, in order to account for the effect of 
some of the streaks that reside in SGS motion on the mean-velocity profile, the second 
term in (3.1) was introduced in the model for rij.  As was mentioned earlier, Schumann 
(1975) has also decomposed SGS stresses into two parts, as in (3.1). The first was to 
account for locally isotropic SGS stresses, and the second to account for inhomo- 
geneities due to  the nonzero component of mean strain. 

In  the present study, the eddy viscosity u$ is defined as follows: 

where c = 0.065 is a dimensionless constant and D = 1 - exp ( - Y + ~ / A + ~ )  is a wall- 
damping function with A+ = 25, as before. It should be pointed out that the character- 
istic length scale associated with v$ is A3, the filter width in the spanwise direction. As 
the resolution in the z-direction is improved, vg will approach zero. Moreover, it  should 
be noted that, owing to its functional form (function of y only), u; does not appear 
directly in the governing equations for the resolvable portions of turbulence stresses, 
and hence does not contribute to the dissipation terms in these equations. This is in 
contrast to vT, which will supplement the molecular viscosity as a dissipating agent for 
the resolvable turbulence stresses. However, v? contributes to the dissipation of mean 
kinetic energy &(ii)2,  and therefore indirectly to the production of resolvable turbu- 
lence stresses. The value of c in (3.4) was chosen to be 0.065 from numerical experi- 
ment. It is approximately the minimum value with which the resolvable turbulent 
kinetic energy can be maintained (i.e. it did not decay indefinitely). This numerical 
experiment was performed with one of the computations reported in table 1 (case l), 
but the same constant was used in all the other calculations reported here. 

4. The computational grid 
Three factors influence the choice of the computational grid. First, the mesh size 

should be small enough to resolve the important scales of motion in the flow. Secondly, 
the computational domain should be large enough that artificialities of the boundary 
conditions do not influence the statistics of the solution in an undesirable way. Thirdly, 
the availability of computer resources restricts the size of calculation that can be done. 

In  the direction normal to the walls ( - 1 < y < l)-f 63 grid points with non-uniform 
spacings were distributed. The following transformation gives the location of grid 
points in this direction : 

where 
yi = *tanh[tjartanha], (4.1) 

~ i = - l + 2 ( j - l ) / ( N 2 - l )  (j= 1 , 2  ,..., N 2 ) .  

t For notational simplicity, we occasionally shift from (z,,~,, z3), ( U ~ , U ~ , U ~ )  to (z,y,z), 
( 2 4  u, w) . 
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Integration Average 
Case N ,  N ,  L,/6 L,/S h: h: h,/S h,/S timet time? 

1 64 64 477 $77 125.7 20.9 0.196 0.033 4.0 1.6 
2 64 128 477 77 125.7 15.7 0.196 0.025 3.65 0.75 
3 64 128 377 71 94.2 15.7 0.147 0.025 3.9 1.6 
4 64 128 277 77 62.8 15.7 0.098 0.025 4.6 2.3 

t In 6/u, units 
TABLE 1.  Specifications of the computed cases 

Here N ,  is the total number of grid points in the y-direction, and a is the adjustable 
parameter of the transformation (0  < a < 1 ) ;  a large value of a distributes more points 
near the walls. I n  our computations we have used a = 0.983 46, N ,  = 63. This value of a 
was selected so that the above grid distribution in the y-direction is sufficient to  resolve 
the viscous sublayer (y+ < 5 ) .  

The selection of the length of the computational box in the streamwise and spanwise 
directions is initially guided by the two-point correlation measurements of Comte- 
Bellot (1963). Her data show that the correlation between velocity fluctuations a t  two 
points away from the walls$ separated in x1 becomes negligible a t  an x1 separation of 
3.26. The correlation between motions a t  two points (away from the walls) separated 
in x3 becomes negligible beyond an x3 separation of 1-68. Thus, if we wish to employ 
periodic boundary conditions in the x, and x3 directions, we must choose a computa- 
tional domain approximately twice as large as these dimensions. This is to prevent 
these simple but artificial boundary conditions from seriously influencing the results 
(Schumann 1973). It should be noted, however, that the computed two-point correlation 
functions provide sufficient information regarding the adequacy of the computational 
domain. If, for example, in the x, direction the length L, of the computational box is 
too short, the computed profile@) of Rii(y,  r )  does not decay sufficiently in the neigh- 
bourhood of r = gL,, and hence L, should be increased. 

I n  the wall region, the important large-scale structures are the ‘streaks’ (Kline et al. 
1967). These have a mean spanwise spacing corresponding to A&, 2: 100, with the 
most probable spanwise spacing A$,,, about 80 in the wall units. I n  addition, Kline et al. 
(1967) and Clark & Markland (1970) occasionally observed U-shaped vortices in the 
inner region. In the studies of Clark & Markland, the average streamwise spacing of 
these structures was found to be Atm = 440. For the present computation a t  Re,  N 640, 
these correspond to dimensionless spacings of 

A,, = 4401640 = 0.687, A,, = 801640 = 0.125. 

Table 1 shows the characteristics of the computationalgrid networks in four different 
calculations reported here. I n  this table, Ni is the number of grid points; Li is the length 
of the computational box; hi is the grid spacing in the i-direction, and subscripts 1 and 3 
refer respectively to the streamwise and spanwise directions. The L,/S and L,/Sentries 
in table 1 show that, except for case 1, where L, < 3.26,s the size of the computational 
domain in all other cases appears to be large enough to accommodate the important 

$ Data are not available near the wall. 
3 In this case, the computed two-point correlation functions R,,(y, r3)  (for y > 0.28) indicate 

that L,  is not sufficiently long. 
I2 F L M  I18 
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large eddies. Furthermore, since the pseudospectral method ( $ 5 )  is used to approximate 
the derivatives in the streamwise and spanwise directions, the computational grid 
resolution (at least for cases 2 , 3  and 4) appears to be just adequate to resolve structures 
with A,, and A,,, spacing in the xl and x3 directions, respectively. It is emphasized that 
the above values for A,, and A,, are based on an ensemble of measurements, and, at a 
given instant, structures with a finer spacing than A,, and A,, can be formed which 
cannot be resolved with the current grid resolution. Thus, we cannot expect the present 
calculations to reveal the streaky structures in the viscous sublayer with mean spacing 
equal to AZm. As we shall see, however, calculations do produce streaks a t  the finest 
scale permitted by the grid. 

Finally, we mention that the grid meshes for pressure do not coincide with grid 
meshes for velocities. Grid points for P are located midway between those for Ui. The 
equation of continuity is enforced a t  node points for P, whereas the momentum 
equations are evaluated at node points for Ui. Note that, in contrast to the conventional 
staggered grid system (Harlow & Welch 1965), in which the three velocity components 
are defined a t  different node points, in the present grid system all the velocities are 
defined a t  the same grid points. This will allow for convenient application of the wall- 
boundary conditions. 

5. The numerical method 
Partial derivatives in the x, and x, directions were evaluated pseudospectrally 

(Orseag 1972). This involves taking the x, (or x,) Fourier transform of the function to 
be differentiated, multiplying the result by ik, (or ik,), where k ,  (k3) is the wavenumber 
in the x, (xs) direction, followed by inverse transformation to get the desired derivative. 
This method has the advantage that it handles the high-wavenumber components of 
the function precisely. Thus the use of the pseudospectral method in the x1 and xg 
directions gives us the best possible resolution (with a given number of grid points) in 
these directions. Partial derivatives in the xz direction were approximated by central- 
difference formulae. These will be described below. 

The time advancement was made using a semi-implicit method (Moin et al. 1978). 
The momentum equatir.. s i?.S) were recast in the form 

where H ,  contains all of the terms in (2.6) that are not in (5.1). For discretization in 
time, we used the Adams-Bashforth method for Hi  and the Crank-Nicolson method 
for the remaining terms in the right-hand side of (5.1). For convenience, we evaluated 
(vT) and v: at the old time step n. 

In  (5.1), Hi includes the term 

The computation of this term can be accomplished by first calculating the term under 
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the large overbar, taking the Fourier transform with respect to x1 and x,, multiplying 
by the Fourier transform of the Gaussian filter function, and then inverse-transforming. 

Next, we Fourier-transform the resulting equations in the x1 and x, directions. This 
converts the set of partial differential equations (5.1) to the following system ofordinary 
differential equations, for every pair of Fourier modes k, and k, with y = x2 as the 
independent variable : 

= Gl, ( 5 . 2 ~ )  
a29:+1 

aY2 

(k2, + kj)] 9;+l + iik, p3 At Pn+l = 4,. 829,n+l 

aY2 

(5 .2b )  

( 5 . 2 ~ )  

A 

Herep, (i = 1 , 2 , 3 )  are known functions of Re7, (vT)", and vgn, and Qi represent the 
terms involving pressure and velocity field a t  time steps n and n - 1.  

The central-difference formulae 

(5.3u) 

(5 .3b)  

were used to approximate 
azay+i aPn+i - -  

ay2 ' ay 

respectively, in (5.2). Here j denotes the velocity mesh point yi, q the pressure mesh 
point yq, and hi = yi - yi-.l. The resulting set of equations, together with the equation 
of continuity evaluated a t  the pressure node points, 

leads to a system of algebraic equations for the Fourier transform of the dependent 
variables a t  the new time step. This system is of block-tridiagonal form and can be 
solved very efficiently (see below). No-slip boundary conditions on velocity were used 
a t  the walls (y = f l),  and periodic boundary conditions were incorporated in the x1 
and x3 directions. Note that pressure wall conditions are not necessary; only velocity 
boundary conditions are sufficient to close the system of equations (see Moin & Kiln 
1980). 

I n  the present calculations, the core memory of the ILLIAC IV is large enough to 
hold only a few planes of the dependent variables. Therefore i t  is important to manage 
efficiently the transfer of data between the core and disk memory, where the entire 
data base resides. A detailed description of the data-management technique used here 
is given in Kim & Moin (1979). Here, we briefly outline the essential steps. At each time 
step, the system of algebraic equations just described is solved by two separate passes 
through the data base. In  PASS 1, the right-hand side of these equations is computed. 
This is accomplished by t,ransferring two (2, 2)-planes of the independent variables 

12-2 
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from the disk memory to the core memory to be processed by a double-buffer scheme. 
I n  this manner, all the (x, 2)-planes are transferred to the core, two planes a t  a time. 

In  PASS 2, the block-tridiagonal system must be solved for each k1 and k,. In  this 
pass, (y, k,)-planes of the right-hand side vector that  were computed in PASS 1 are 
transferred to the core memory. Owing to the limitation of the core size of the ILLIAC 
IV, a special algorithm had to be developed to solve the block-tridiagonal system of 
equations. For each k, and k,, this algorithm requires 676N2 floating-point arithmetic 
operations, in contrast to 376N2 operations for the conventional block-tridiagonal 
solver (Merriam 1978 private communication). The extra computations are necessary 
in order to avoid the extra 1/0 passes that would otherwise have been necessary. 

With a full use of the parallel processing capabilities of the ILLIAC IV computer 
and the above data-management technique, the computer time per time step (CPU and 
I/O time) was 22 s for 63 x 64 x 64 grid-point calculations and 36 s for the computations 
with 63 x 64 x 128 grid points. For the calculations shown in table 1, the dimensionless 
time step At was set a t  0.001 for case 1, 0.00075 for case 2, and 0.0005 for cases 3 and 4, 
The total time of calculation on the ILLIAC IV was approximately 24 h for case 1 ,  48 h 
for case 2 , 7 8  h for case 3, and 92 h for case 4. Throughout the computations, the value of 

never exceeded 0.35. 
The initial condition for case 1 in table 1 was obtained by assigning the final velocity 

field described in Kim & Moin (1979) to the corresponding grid points used here. For 
case 2, the final velocity field from case 1 was simply assigned to the alternate mesh 
points. The values a t  the intermediate points were obtained by Fourier interpolation. 
A similar procedure was used to generate the initial veIocity field for cases 3 and 4. 

6. Mean-velocity profile and turbulence statistics 
Starting from the initial velocity field, for each case, the governing equations were 

integrated forward in time until the numerical solutions reached statistically steady 
states. These equilibrium states were identified by approximate periodicity of the 
horizontally averaged turbulence stresses in time. Next, in order to obtain better 
statistical samples, the equations were further integrated in time, and a running time 
average of the horizontally averaged turbulence quantities was calculated. For each 
case, the calculations were considered to be complete when the time-averaged turbu- 
lence quantities became stationary. The total time of integration and the averaging 
time for all the computations reported here are shown in table 1 .  

Figure 1 shows the mean-velocity profile (U) (unless otherwise stated, in this section 
( ) indicates horizontal as well as time averaging) for all cases reported in table 1.  The 
calculated mean-velocity profiles are in good agreement with each other as well as 
with the experimental data of Hussain & Reynolds (1975). It appears that, a t  least for 
the different computational grid networks considered here, the law of the wall and the 
corresponding logarithmic layer and von K&rm&n constant can be predicted with 
virtually no dependence on the grid resolution. This is particularly significant in light 
of the fact that the characteristic length scale of the subgrid-scale model used here is a 
function of computational grid resolution. Figure 2 shows the profiles of the correlation 
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FIGURE 1. Mean-velocity profiles from four computed cases and comparison with experimental 
data: - - - , Hussain & Reynolds (1975), Re = 13800; A, case 1 ;  0, 2 ;  0, 3; 0, 4. 
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FIGURE 2. Correlation coefficients between U" and ;ir from four computational cases and com- 
parison with experimental data : - , Sabot & Conite-Bellot (1976); A, case 1 ; 0 , 2 ;  0 , 3 ;  0 , 4 .  

coefficient between the resolvable streamwise and vertical components of turbulent 
fluctuations, 

where 5" = E- (ii). The calculated profiles for all the cases reported in table 1 are in 
good agreement with each other and with the experimental data of Sabot & Comte- 
Bellot (1976). The results presented in figure 2 together with those in figure 1 establish 
some confidence in the reliability of the subgrid-scale model used in this study. 

In  the remainder of this paper we shall present, in some detail, the results obtained 
from case 4 in table 1. The computational grid resolution for this case is better than for 
all the other cases; and, as will be shown later in this section, the computational domain 
appears to be large enough to include the important large eddies. 

(U'%)/ [ (E ""* (."4], 
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6.1. Turbulence stresses 

Vertical profiles of the resolvable mean Reynolds shear stress (U"V> and the total 
Reynolds shear stress (U%) + (rI2) are shown in figure 3. These profiles indicate that 
the average Reynolds shear-stress profile has attained the equilibrium shape that 
balances the downstream mean pressure gradient in the regions away from the walls. 
In  the vicinity of the walls, the viscous stresses are significant, and they, together with 
the total Reynolds stress, balance the mean pressure gradient. The symmetry of the 
I (U%) + T ~ ~ )  profile about the channel centre line indicates that  the total averaging 
time and statistical sample are adequate. Moreover, it should be noted that the subgrid- 
scale contribution to the total Reynolds stress is significant only in the vicinity of the 
walls. 

Figures 4 and 5 show the profiles of the dimensionless resolvable turbulence intens- 
ities. For comparison, some of the available experimental data over a range of Reynolds 
numbers are also shown. Once again, the symmetry of the calculated turbulence 
intensities about the centre line of the channel indicates that the total averaging time 
was sufficient for an adequate statistical sample. The overall agreement of the com- 
puted turbulence intensities with the experimental measurements is good. I n  figure 5 ,  
the resolvable turbulence intensities in the vicinity of the lower wall are plotted vs. 
y+ = yw zc,/v. In  spite of large differences among various measurements, the maximum 
of the computed (U"2)h  is located a t  a distance farther away from the wall (y+ 2: 30) 
than those of the measured turbulence intensities (y+ N 13-20). I n  addition, in the 
immediate neighbourhood of the wall, an appreciable fraction of the vertical com- 
ponent of turbulence intensity appears to reside in the subgrid-scale motions. It should 
be noted that, in contrast to the turbulence shear stress, in order to deduce the subgrid- 
scale contribution to turbulence intensities one has to obtain an estimate for the 
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FIGURE 4. Resolvable turbulence intensities and comparison with experimental data. 

kinetic energy of SGS stress Qkk, and use it in (2.8a). Owing to  the high degree of aniso- 
trophy in the channel flow, especially in the vicinity of the walls, we have been unable 
to obtain a reasonably accurate estimate for Qkk.  

6.2. Two-point correlation functions 

Two-point correlation functions 

for i = 1 , 2 , 3  (no summation) are plotted in figures 6 and 7 a t  four vertical locations. 
These profiles show that, in general, for small separation distances, the correlation for 
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the velocity in the direction of the displacement is larger than the corresponding trans- 
verse correlations. In addition, the longitudinal correlation in the streamwise direction 
extends over much longer distances than do all other correlations. This result was 
also obtained by Deardorff (1970). 

The slow decay of Rll(y, = 0.025, r l )  for increasing rl indicates that near the wall 
the eddies are highly elongated in the streamwise direction. On the other hand, the 
profiles of R,,(y, r3) show that the spanwise extent of turbulence structures near the 
wall is much smaller than for those away from the wall. Thus, it appears that, in 
accordance with the experimental observations, near the walls the computed flow field 
consists of elongated streaky structures. The structure of the flow field will be examined 
in some detail in $7 .  

For comparison, in figures 6 and 7, the profiles of Rll(y,, ri) (i = 1 , 3 )  a t  y,/6 = 0.1 1, 
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0-44, and 1.0 from Comte-Bellot’s (1963) measurements are included. Note that the 
computed and measured correlations are obtained a t  slightly different vertical loca- 
tions. The correlations were calculated a t  selected points in the y-direction, and the 
comparison is made a t  the locations where the y-co-ordinates of the computed and 
measured correlations were closest to each other. For small values of the non- 
dimensionalized separation distance rl, the measured correlations Rll( yw, rl) are smaller 
than the computed ones, whereas for larger values of rl the reverse is true. At small 
values of rl, the discrepancy between the computed and measured correlations is due 
to the fact that the measurements were made at  a much larger Reynolds number (Re 
= 135000) than in the present simulation (see Batchelor 1953). However, the cause of 
the difference between the computed and measured profiles for larger values of r1 is 
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not clear. Comparison of the measured profiles with the computed ones obtained from 
calculations with larger computational box lengths in the streamwise direction shows 
no improvement. Thus the streamwise extent of the computational box does not appear 
to  be a factor here. However, possible inadequate resolution in the x-direction may sup- 
press the formation of some small-scale structures. I n  this case, these struct,ures could 
conceivably combine to  form eddies that have long streamwise extent through the 
channel cross-section. I n  addition, it should be mentioned that Comte-Bellot's axial 
two-point correlation data were obtained by traversing one probe downstream of 
another probe. With this procedure, the measured R,,(y, r l )  may be contaminated with 
errors due to the effect of the wake of the upstream probe. However, the probe inter- 
ference effect should be significant only for small separation distances. 

I n  figure 7, the profiles of R,,(y, r3) are also compared with the measurements of 
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Comte-Bellot. Aside from the Reynolds-number effect for small values of r3, the agree- 
ment between the computed and measured correlations is good. Finally, the other two 
spanwise correlations R2,( y, r3) and R33( y, r3) were also compared with the corresponding 
ones measured by Comte-Bellot. The measured R,,(y, r3)  and R3,(y, r3) are systematic- 
ally lower than the computed ones for the values of r3 for which these correlations have 
appreciable magnitude. 

6.3. Skewness and flatness factors of resolvable turbulence 

The velocity skewness and flatness factors, which are defined as 

( i 4 4 )  @ i 3 )  s(q) = - 
(-72 u, ) +' ( q ) 2  

qu;) = - (i = 1 , 2 , 3 ;  nosummation) 
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respectively, are plotted in figure 8. The flatness factors of all the velocity components 
reach their maxima a t  the wall. This indicates that in the vicinity of the wall the 
turbulence is highly intermittent. Throughout an appreciable portion of the channel 
cross-section, F(2,) and X(Zi,) are approximately equal to three and zero respectively. 
These values correspond to the flatness and skewness factors of a Gaussian distribution. 
However, Kreplin & Eckelmann (1979) measured the 2t3 probability distribution and 
have shown that it is not Gaussian, even though the valuesofS(u,) and F(u3) correspond 
to that of a Gaussian distribution. 

Near the wall, X(Ul; )  is positive, whereas away from the wall it is negative. This 
indicates that near the wall the large-amplitude G-fluctuations are due primarily to 
arrival of high-speed fluid from regions away from the wall. On the other hand, away 
from the wall the large-amplitude Z-fluctuations are most probably associated with 
low-speed fluid leaving the wall region. These observations are in agreement with the 
experimental findings of Brodkey, Wallace & Eckelmann (1974), and with contour 
plots of U"w from numerical simulation of turbulent channel flow (Kim & Moin 1979). 
However, as will become clear below, the precise vertical location (in wall units) of the 
crossover point in the present calculation is in disagreement with experimental data. 
This discrepancy is probably due to inadequate grid resolution in the computations. 

In figure 8, the profiles of skewness and flatness factors from measurements of Comte- 
Bellot (1963) and Kreplin & Eckelmann (1979) are reproduced. The overall agreement 
between computational and experimental data is good. This is particularly encouraging 
considering the significant contribution of small-scale turbulence to these quantities 
and the difficulties associated with their measurements. 

6.4. Resolvable vorticity fluctuations 

Figure 9 shows the profiles of the non-dimensional r.m.s. vorticity fluctuations. The 
spanwise component of vorticit,y fluctuations ( w i 2 ) $  attains its maximum a t  the wall, 
and decreases monotonically towards tjhe channel centre line. The profile of the r.m.s. 
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streamwise vorticity fluctuations (wZ,)b also attains its maximum a t  the wall, but, in 
addition, displays a local maximum a t  y+ 2: 30. At about the same location, the peak 
of the r.m.6. vertical component of the vorticity is located. The mechanics underlying 
this behavior of the profile of (wf)9 will be discussed in 3 7.  

It is interesting to note that, in spite of large differences between different com- 
ponents of r.m.s. (0:~)9 near the wall, away from the wall (y+ > 70) they are virtually 
identical. This is in contrast to r.m.s. velocity fluctuations (E:2)4.  The difference 
between the two may be explained by noting that the relative contribution of small 
scales to vorticity fluctuations is significantly larger than their contribution to 
velocity fluctuations, and away from the walls the small scales tend to be isotropic. 
Exploiting the ‘isotropy’ of vorticity fluctuations may be very useful in statistical 
analysis of turbulent shear flows. 

The limiting wall values of vorticity fluctuations in the present calculations are 
0.20(aii,/i?y) and O.13(aU1/ay) for (wJ2)B and (wZ,): respectively. The agreement of 
these computed values with experimental measurements (see Kreplin & Eckelmann 
(1979) for data from several measurements) is satisfactory. 

6.5. Statistics involving resolvable pressure fluctuations 

The root-mean-square value of the resolvable wall-pressure fluctuations (P2)4/7w is 
2.05 for both walls. This value is in fair agreement with the values of 2.64 obtained by 
Willmarth & Wooldridge (1962), 2.31 by Willmarth (19651, 2-6 by Elliott (1972), and 
of 2.0 and 2.5 reported by Corcos (1962) for fully developed pipe flows. However, the 
computed values are considerably lower than the 3.59 obtained by Blake (1970) or 
Emmerling’s (1973) measurements (see Willmarth 1975). There is strong evidence 
(Willmarth 1975) that  the contribution of small-scale fluctuations to the intensity of 
wall-pressure fluctuations is significant. The measurements of Blake and Emerling 
were made respectively with a pinhole microphone and by optical techniques. There- 
fore, in these experiments the smaller-scale pressure variations are expected to be 
better resolved. Thus, in view of these two experiments, it appears that an appreciable 
portion of the pressure fluctuations may reside in subgrid-scale motions. However, 
there is some indication that the intensity of the large-scale wall-pressure fluctuations 
increases with Reynolds number (Willmarth 1975). Since the above measurenients 
were made at higher Reynolds numbers than the present simulation, some of the 
discrepancy between the computations and latter two experiments may be due to the 
difference in Reynolds number. 

The profiles of the diagonal elements of the resolvable pressure-strain correlation 
tensor 

are shown in figures 10 and 11. These terms govern the exchange of energy between the 
three components of resolvable turbulence kinetic energy (Hinze 1975). The negative 
sign for $zz (no summation) indicates loss, or transfer of energy from (Ei2)>” to other 
components, whereas a positive sign denotes energy gain. These profiles show that, 
except in the close vicinity of the wall, as expected, the streamwise component of 
turbulent velocity fluctuations transfers energy to the cross-stream components. 
However, very near the wall, there is a large transfer of energy from the vertical 
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FIIXTRF: 11. Resolvable portion of the trace of the pressure-strain correlation tensor in the 
vicinity of the lower wall: 0, $511; A ,  &; 0, $33. 

component of turbulence intensity to  the horizontal components. I n  this work, we shall 
refer to this phenomenon as the ‘splatting’ or impingement effect. This effect will be 
discussed further in $ 7 .  It will be shown that the splatting effect is an important 
property of the flow in the vicinity of the walls, and should be taken into account in the 
modelling of near-wall turbulence. I n  fact, this phenomenon was noted in a previous 
study by Daly & Harlow (1970)) who included a term in their statistical model of gi j  to 
account for its effect. 
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pus = - (aJ’ a p / a y + v  apiax).  

The profile of the off-diagonal element together with the pressure diffusion term 
- a(Piin) /ay,  and their sum 

P u t , = -  (-$ u -+v- -if) 
in the vicinity of the lower wall are shown in figure 12. The last term P,, appears in the 
governing equation for resolvable turbulence shear stress, (U”V).  The components of 
Puv, #,,, and - a(Pu”)/ i iy ,  have comparable magnitudes, and, as will be shown below, 
near the wall they provide important contributions to the governing equation for 
@“@). As expected (Hinze 1975), except in the immediate neighbourhood of the wall, 
the sign of $,, is opposite to that of (U”V) .  However, near the wall, where the splatting 
effect is present, $,, has the same sign as ( U “ V ) ,  thus contributing to the production of 
turbulence. 

6.6. Resolvable turbulence intensity and shear-stress balance 

I n  phenomenological turbulence modelling, the objective is to construct rational 
models for the correlations that appear in the governing equations for the Reynolds 
stresses. For tjhe resoltiable portion of the flow field in channel flow, these equations are 

(6.2) 
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FIGURE 13. Balance of the resolvable portion of the streamwise component of turbulent kinetic 
energy: A, production; 0, convection (turbulent diffusion) ; 0, cascade; 8, velocity-pressure 
gradient; a, dissipation; 0, viscous diffusion. 

It should be emphasized that the above equations are for the resolvable portion rather 
than the total turbulent stresses. However, considerable insight into the mechanics 
of energy transfer and the relative importance of various terms in the Reynolds- 
stress equations may be gained from the corresponding terms in these equations. 

In figures 13-17, all the correlations appearing in the above equations, and in the 
governing equation for the resolvable turbulent kinetic energy, q2 = fr(u'; + E; + ?if), 
are plotted in the vicinity of the lower wall (y+ < 90). The first term in the right-hand 
side of (6.1) and (6.4) is the production term. In  figures 13-17, the remaining five terms 
in the right-hand side of each equation are labelled as convection (turbulent diffusion), 
velocity-pressure gradient (VPG), diffusion, cascade, and dissipation. The last term in 
each equation, A,,, is a relatively complicated expression involving I+ They would be 
identically equal to zero if vr were a constant. These terms were calculated and found 
to be negligibly small compared with the other terms in each equation. 

In figures 13 and 17, the production and dissipation are clearly the dominant termsin 
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FIGURE 15. Balance of the resolvable portion of spanwise component of turbulent kinetic energy. 
See caption of figure 13 for details. 

most of the region shown. I n  the immediate neighbourhood of the wall, however, 
where the production term is small, viscous diffusion carries sufficient energy inward to 
balance the large viscous dissipation there. I n  addition, it can be seen that, aside from 
the close vicinity of the wall (y+ < 15), energy is convected from the wall region, where 
production is high, to the regions away from the wall. 

The velocity-pressure-gradient terms make large contributions to the balance of the 
governing equations for normal and spanwise components of turbulent kinetic energy. 
Near the wall, the triple-correlation term (convection) and pressure-strain and pressure- 
diffusion terms in the (Ui) equation are very significant. In  particular, the reduction of 
the normal component of turbulent energy due to the splatting effect mentioned above 
is compensated by the pressure-diffusion term. 

Near the wall (yf < 25), in the dynamical equation for Reynolds shear stress 
(?i"z), the triple-correlation and velocity-pressure gradient, P,,,, are the dominant 
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FIGURE 17. Balance of the resolvable turbulence kinetic energy. See caption of figure 13 for details. 

terms. However, for y+ > 25, the contribution of qLt, is small and the production term 
takes on a more active role. Moreover, i t  should be noted that in this equation the 
viscous-diffusion and ‘ dissipation ’ terms appear to  be negligible. 

I n  (6.2)-(6.4) and in figures 13-17, the terms involving molecular and eddy viscosity 
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were combined. In  figure 18, there are separate plots of the dissipation of turbulent 
kinetic energy due to molecular and eddy viscosity respectively. It can be seen that, 
near the wall, the dissipation due to eddy viscosity is negligible compared to that due 
to molecular viscosity. However, in the regions away from the wall, they are compar- 
able. Finally, in figure 18, the cascade term - (U; aAii/ax,) is also plotted. Near the 
wall, its magnitude is larger than the dissipation due to eddy viscosity, and away from 
the wall they are of the same order of magnitude. Therefore, as was pointed out in $2 ,  
inclusion of (?i; aAii/axj) in the modelling assumption for the subgrid-scale stresses is 
not recommended. As long as this term can be evaluated explicitly, one should do so. 

7. Detailed flow structures 
In  this section we shall investigate the detailed structure of the computed flow field. 

This will be done by examining contour plots of instantaneous velocity, pressure, and 
vorticity field, and by tracking passive particles in the flow. The latter approach is a 
simulation of laboratory flow-visualization experiments using hydrogen-bubble wire. 

Figure 19 shows the cbntour plot of U"in the ( x ,  2)-plane at  y+ = 6.26 and a t  the non- 
dimensional time, t = 4.3. In  all the contour plots shown here, positive values are 
contoured by solid lines and negative values are contoured by dashed lines. In  addition, 
all the instantaneous plots are obtained a t  the non-dimensional time t = 4.3. The 
distinctive feature of the flow patterns in figure 19 is the existence of highly elongated 
regions of high-speed fluid (?iff > 0) located adjacent to the low-speed regions. This 
picture of the flow in the vicinity of the wall is in agreement with laboratory observa- 
tions. In their visual studies, Runstadler, Kline & Reynolds (1963) and, more recently, 
other investigators have clearly demonstrated that the viscous sublayer consists of 
coherent structures of high- and low-speed streaks alternating in the spanwise direc- 
tion. These studies have also shown that the streaks are the unique characteristic of 
the wall-layer turbulence, and they are absent in the regions away from the walls. 
Figure 20 shows the contour plot of z" in an (2, z)-plane far away from the wall 
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FIGURE 20. Contours of J” in the (x, 2)-plane at  y = - 0.374. 

(3+ = 400). I n  this region, in agreement with experimental observations, it is clear 
that the streaks and, for that matter, any definite organized structures are absent in 
the computed flow patterns. 

I n  figure 19, one can distinguish several localized regions of very high-speed fluid 
(large concentration of solid lines) that are located on the high-speed streaks. Figure 21 
shows the corresponding contour plot of pressure fluctuations, obtained a t  the same 
vertical location (yf = 6.26). It can be seen that, in contrast to U“, the pressure patterns 
are not elongated in the streamwise direction. However, the regions of high-pressure 
fluctuations are generally located in the vicinity of the ‘pockets’ (see Falco 1978) of 
high-speed fluid. This correspondence together with examination of the contour plots 
of V (see below) suggest that these pockets are ‘quasi-stagnation’ regions which are 
formed as a result of the arrival of high-speed fluid to the wall layer. Moreover, the 
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FIGURE 21. Contours of P in the (z, 2)-plane at y+ = 6.26. 

- 
FIGURE 22. Contours of spanwise vorticity fluctuation w: in the (x, 2)-plane at yf = 6.26. 

contour plots of normal and spanwise velocity fluctuations show that, like the pressure 
patterns, they do not exhibit elongated streaky structures. These observations imply 
that the wall layer may be viewed as a bed of low-speed fluid that is constantly sub- 
jected to  the arrival of energetic eddies from the layers above. These energetic eddies 
(with the help of the strong mean shear) form the high-speed streaks in the wall region. 

Figure 22 shows the contour plot of spanwise vorticity fluctuation, 

,, av au If 
ax ay 

w, =--- 

in the same (x,z)-plane as in figure 19. Virtually all the regions with large vorticity 
fluctuations are associated with negative w i  (large concentration of dashed lines). In 
these regions, the streamwise velocity profile has excess momentum with respect to the 
mean velocity (i.e. G” > 0). It should be point,ed out that, in the vicinity of the wall, 
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the relatively large positive values of S(;ij") (figure 8) indicate that the existence of 
regions with ;ci" c 0 are more probable that those with U" > 0. However, the structures 
with large magnitudes ofii" are most likely associated with positive values of Ti". This is 
in agreement with the above observations. 

Figures 23 and 24 show the 5" and V patterns in an (x, y) plane ( x  = 4h3) which pass 
through the high-speed region in the lower left-hand corner of figure 19. In figure 24, a 
positive U (the solid lines) represents fluid moving in the positive y-direction, and a 
negative V (the dashed lines) represents fluid moving in the negative y-direction. It 
can be seen that, in the vicinity of the walls, the high-speed fluid elements (U" > 0 )  
correspond to the sweep event, i.e. V c 0 near the lower wall, and V > 0 near the upper 
wall. On the other hand, the low-speed fluid elements are generally being ejected from 
the wall regions. Clearly, both the sweep and ejection events have a positive contribu- 
tion to the production of turbulent kinetic energy. One of the distinct features of figure 
23 is that the high-speed structures near the walls are inclined a t  oblique angles with 
respect to the walls. This is the consequence of the action of mean shear on any fluid 
element from theouter layers that is moving toward the walls. Similar large-scale struc- 
tures have been identified in the laboratory by Rajagopalan & Antonia (1979). In their 
measurements, they report the mean angle of inclination of these structures to be 13". 

Figures 25 and 26 show the contour plots of U" and V in a (y, 2)-plane (x = 0) .  In these 
plots, only the lower half of the channel is shown. Throughout a significant portion of 
the region displayed, there is a negative correlation between U" and 5. Some of the 
regions where the correlation between ii" and 5 is negative extend from the wall region 
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FIGURE 25. Contours of E" in the (y, z)-plane at x = 0. 
(Only the lower half of the channel is shown.) 

y , / 6 =  1.0 

- 
FIGURE 26. Contours of 5 in the (y, 2)-plane at z = 0. 

(Only the lower half of the channel is shown.) 

to the channel centreline. In the wall region, the vertical and spanwise extent of the 
eddies is significantly smaller than in the regions away from the wall. In particular, 
near the wall in figure 24 the array of high- and low-speed fluid is clearly discernible. 

Figure 27 shows the a", 3, and W patterns in the close vicinity of the wall (yf < 46, 
yw/6 < 0.072) in the same (y, 2)-plane as in figures 25 and 26. Here, the region near the 
wall is magnified, and hence the contour lines are highly distorted. In figure 27 (a), the 
mean spacing between two adjacent high-speed streaks (or low-speed ones) is about 
250 in the wall units. The mean streak spacing can also be obtained from the 
Rll(yw = 0.025, r3)  profile in figure 7. In this figure, the negativepeakoccurs a t  rf 21 125. 
This is the distance between two adjacent high- and low-speed streaks. Therefore, 
the corresponding distance between two high- (or low-) speed streaks is about 250 in 
t'he wall units. These two values are, surprisingly, in good agreement with each other 
but are considerably larger than the generally accepted value of A&, N 100. Therefore, 
as was pointed out in $ 3  for the Reynolds number considered in this study, the compu- 
tational grid resolut.ion is inadequate to resolve the streaks a t  their proper scale. 
However, as we have seen, the computed flow patterns, in the wall region, do exhibit 
the streaky structx4res a t  the finest scale permitted by the grid. The R,,(yw = 0.025, r3) 
profile from case 1 in table 1 shows that the mean streak spacing in that calculation is 
about 315 in the wall units. Thus, there is a definite improvement in the computed 
streak spacings with refinement of the comput'ational grid resolution. The effect of 
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computational grid resolution on other turbulent correlations varies, depending on the 
variables involved and the order of the statistical correlations. As a general rule, the 
contribution of the subgrid-scale eddies to lower-order single-point statistical correla- 
tions (e.g, (El), ( i i ; 2 ) > )  is negligible (except near the wall), but their contribution to 
higher and multi-point statistical correlations can be appreciable. 

I n  figure 2 7 ( b ) ,  one can see an array of positive and negative regions of v-contour 
lines that correspond to fluid moving away from and toward the wall. Intense shear 
layers are located a t  the interface between the energetic fluid streams moving toward 
and away from the wall. These shear layers may undergo Helmholtz-type instabilities 
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FIGURE 28. Contours of streamwise vorticity fluctuations in the (y, 2)-plane at .2: = 0; 
(a )  y < - 0 . 5 ;  (6) yf < 46. 

in the (y, %)-plane that result in the formation of streamwise vortices. These vortices 
can be clearly identified in figure 28, where the contour plot of w, in the same (y, 2)- 

plane is shown. 
Comparison of figures 27 ( b )  and ( c )  demonstrate that, in the close vicinity of the wall 

(yf < lo), the high-speed vertical streams with negative normal component of velocity 
produce a flow pattern similar to that of a jet impingement on a plate. On the other 
hand, the high-speed vertical streams with positive normal component of velocity are 
formed from two streams with opposite velocities in the spanwise direction. Since the 
high-speed fluid elements arriving a t  the wall region are more energetic than the viscous- 
dominated fluid moving away from the wall, there is a net transfer of energy from the 
normal component of turbulence intensity to the horizontal components (the splatting 
effect). This appears to be the reason for the behaviour of the pressure-strain correla- 
tions in the vicinity of the wall (figure 11) .  I n  addition, it should be noted that the 
impingement of fluid from outer layers on the wall leads to stretching of spanwise 
vorticity fluctuations (as well as streamwise vorticity) which can be an important 
mechanism for its amplification. 

Near the wall, in figure 27 (c), one can see large gradients of the spanwise velocity 
component in the normal direction. On the other hand, owing to the wall-suppression 
effect, the vertical component of turbulence intensity is degraded there. Large values 
of aui/iiy lead to high values of streamwise vorticity fluctuations in the neighbourhood 



372 P. Moin and J .  Kim 

FIGURE 29. Particles generated from a ‘z-wire’ located at yf  = 12. 
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FIGURE 31. Particles generated from a vertical wire extended between the two channel walls: 
( a )  two-dimensional view; ( b )  three-dimensional view. 

of the wall. In  figure 28, i t  can be seen that the regions with large w, are concentrated 
near the wall. Here, two distinct areas can be identified: the first is slightly above the 
wall (10 < yf < 40), where the large amplitudes of w, are due to revolving fluid ele- 
ments induced by the intense shear layers shown in figure 27 (b ) ;  the second is in the 
immediate neighbourhood of the wall (y+ < lo), where the splatting effect and no-slip 
boundary conditions lead to large values of aw/ay, and consequently w,. In  figure 9, 
the profile of(o:)B attained its maximum at the wall, and displayed a local maximum 
a t  y+ N 30. The maximum a t  the wall is a result of the splatting effect, and the local 
maximum is located in the first region described above. 
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FIGURE 32. Particles generated from a vertical wire extended from the lower wall to y = - 0.5. 

So far, we have examined the eddy structure of the turbulent channel flow by con- 
sidering two-dimensional contour plots of instantaneous velocity, pressure, and 
vorticity field. To gain a better insight into the unsteady dynamics of the flow, a 
computer motion picture simulating flow-visualization experiments with hydrogen- 
bubble wires was made. Several sequences of film were generated. At regular intervals 
in each sequence (AT = 0.015 in non-dimensional time units), 128 particles were 
generated along a line either parallel or normal to the walls. These particles were 
followed until the memory capacity of the graphic display unit was depleted. Here, we 
briefly discuss some of the still photographs taken from the film. 

Figure 29 shows the particles generated along a line parallel to the z-axis ('2-wire ') 
and located near the lower wall (y+ = 12). In  this figure, the wall-layer streaks are 
clearly evident. On several occasions when viewing the motion picture, it  was observed 
that the particles generated near the wall were violently ejected to regions as far away 
from the wall as y+ E 400. 

Figure 30 shows the time history of the particles generated along a '2-wire' which is 
located distant from the wall (y+ = 319). It can be seen that the coherent streaky 
structures that are the characteristic of wall-layer turbulence are absent in the regions 
away from the walls. 

I n  figure 31, the time history of the particles generated along a line normal to the 
walls is shown. The formation of inflexional velocity profiles and strong shear layers 
near the walls is very similar to the corresponding photographs obtained by Kim et al. 
(1971) in their flow-visualization studies. This resemblance is even more pronounced in 
figure 32, where 128 particles were generated along the same vertical line, as in figure 
31, but extended from the lower wall to y = - 0.5. Here, one can see several profiles 
with multiple inflexion points. In  addition, in this figure, the formation of a streamwise 
vortex with an axis of rotation which is tilted outward in the flow direction and its 
ultimate breakup are clearly discernible. 

8. Summary and conclusions 
In  this study, turbulent plane Poiseuille flow has been simulated numerically at  a 

moderate Reynolds number. Most of the calculations were carried out with 5 16 096 grid 
points on the ILLIAC IV computer. The agreement of the computed mean-velocity 
profile and turbulence statistics with experimental data is good, 

The resolvable portion of the statistical correlations appearing in the Reynolds- 
stress equations was calculated. The role and relative importance of the various terms 
in these equations were discussed. 
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The structure of the flow field was examined in some detail. It was found that, in 
agreement with experimental observations, the computed flow pattern in the wall 
region was characterized by coherent structures of low- and high-speed streaks alter- 
nating in the spanwise direction. I n  this region, the large-amplitude, streamwise 
velocity fluctuations were due primarily to  the arrival of high-speed fluid elementsfrom 
adjacent layers, The regions with large-amplitude, streamwise vorticity w, were 
concentrated near the wall. Slightly above the wall, these regions contained revolving 
fluid elements induced by strong shear layers in the cross-stream plane. In the im- 
mediate neighbourhood of the wall, the splatting effect led to large magnitudes of w, 
and instigated transfer of energy from the normal component of turbulent kinetic 
energy to the horizontal components. 

With three-dimensional, time-dependent, numerical simulation of turbulence, one is 
capable of obtaining detailed, instantaneous information about the flow a t  thousands 
of spatial locations. This information can be used effectively to study the structure and 
statistical properties of the flow, and their relation to each other. Furthermore, with the 
aid of computer graphics and the ability to move back in time and recreate an event in 
the flow after it has already been observed, one has the unique opportunity to study 
the mechanics of turbulent shear flows. Thus, with the anticipated advances in com- 
puter technology, it is expected that in the near future numerical simulation of 
turbulent flows will make important contributions to turbulence research. 

This work was carried out in co-operation with the Thermo- and Gas-Dynamic 
Division of the Ames Research Center, NASA. We are indebted to our colleagues, 
A. Leonard, R. S. Rogallo, M. Rubesin and A. A. Wray, Ames Research Center, and 
D. R. Chapman, J. H. Ferziger and W. C. Reynolds, Stanford University, for numer- 
ous helpful discussions during the course of this study. 
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